Patron CQRS y Event Sourcing:

Arquitectura CRM Escalable para
Hipotecas

Autore: Francesco Zinghini | Data: 1 Febbraio 2026

En el panorama de la ingenieria de software de 2026, la construccién de
sistemas CRM (Customer Relationship Management) para el sector crediticio
requiere un cambio de paradigma respecto a las arquitecturas monoliticas
tradicionales. El desafio principal ya no es solo la gestion del dato, sino la
capacidad de servir millones de solicitudes de lectura (consulta de tipos de
interés, simulaciones) sin comprometer la integridad transaccional de las
operaciones de escritura (insercion de expedientes, tramitacién). Es aqui
donde el patron CQRS (Command Query Responsibility Segregation) se

vuelve no solo util, sino indispensable.

En este articulo técnico, exploraremos cémo desacoplar las operaciones de
lectura de las de escritura para construir una infraestructura resiliente,

auditable y de alto rendimiento, especifica para la gestién de hipotecas.

éQué es el Patron CQRS y por qué es vital en
Fintech?

El patron CQRS se basa en un principio fundamental definido por Bertrand
Meyer: un método deberia ser un comando que ejecuta una accién o una
consulta que devuelve datos al solicitante, pero nunca ambos. En un contexto
arquitecténico moderno, esto significa separar fisica y l6gicamente el modelo

de escritura (Command) del modelo de lectura (Query).

Copyright © 2026 TuttoSemplice.com - Tutti i diritti riservati

El problema del modelo unico en las Hipotecas

Imaginemos un CRM bancario tradicional basado en una Unica base de datos
relacional (ej. SQL Server u Oracle). La tabla Expedi ent esHi pot eca esta sujeta

a dos tipos de estrés:

e Escritura (Write): Los operadores de back-office actualizan el estado del
expediente, cargan documentos y modifican los tipos aplicados. Estas

operaciones requieren transacciones ACID rigurosas.

e Lectura (Read): Los portales de clientes, las apps moéviles y los
comparadores externos interrogan continuamente el sistema para obtener
el estado del expediente o los tipos actualizados. La relacién

Lectura/Escritura puede superar facilmente 1000:1.

Utilizar el mismo modelo de datos para ambos propdsitos conlleva blogueos de
la base de datos, cuellos de botella en el rendimiento y complejidad en la
gestion de consultas complejas. EI CQRS resuelve este problema creando dos

stacks distintos.

Arquitectura CQRS + Event Sourcing: El corazon del
sistema

Para un sistema de gestién de hipotecas, el CQRS ofrece su maximo potencial
cuando se combina con el Event Sourcing. En lugar de guardar solo el estado
actual de un expediente (ej. “Estado: Aprobada”), guardamos la secuencia de

eventos que ha llevado a ese estado.

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

El Lado Command (Escritura)

El modelo de escritura es responsable de la validacién de las reglas de negocio.
No se preocupa de cdmo se visualizaran los datos, sino solo de gque sean

correctos.

e Input: Comandos (ej. Crear Expedi ent eHi pot eca, Aprobarl ngresos,

Bl oquear Ti pol nt er es).

e Persistencia: Event Store. Aqui no guardamos registros actualizables,

sino una serie inmutable de eventos.

e Tecnologia recomendada: Bases de datos relacionales robustas como
PostgreSQL o bases de datos especificas para time-series/eventos como

EventStoreDB.

Ejemplo de flujo de eventos para un solo expediente:

1. MortgageApplicationCreated (payload: datos personales, importe

solicitado)
2. Credit CheckPassed (payload: puntuacidn crediticia)
3. I nterest Rat eLocked (payload: tipo 2.5%, vencimiento 30 dias)
Este enfoque garantiza un Audit Trail nativo, requisito fundamental para el
cumplimiento bancario (BCE/Banco de Espafa). Es posible reconstruir el estado

del expediente en cualquier momento pasado simplemente reproduciendo los

eventos hasta esa fecha.

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

El Lado Query (Lectura)

El modelo de lectura estd optimizado para la velocidad y la simplicidad de
acceso. Los datos estan desnormalizados y listos para ser consumidos por las

API.

e Actualizacion: Se realiza mediante “Proyecciones”. Un componente
escucha los eventos emitidos por el lado Command y actualiza las vistas

de lectura.

e Tecnologia recomendada: Bases de datos NoSQL como MongoDB o

Amazon DynamoDB.

Gracias a esta separacion, si el portal de clientes solicita la lista de expedientes
activos, interroga una coleccién MongoDB precalculada, sin tocar nunca la base

de datos transaccional donde ocurren las escrituras criticas.

Stack Tecnoldgico: Relacional vs NoSQL en el
contexto CQRS

La eleccion del stack en 2026 ya no es “o0 uno u otro”, sino “el mejor para el

propésito especifico”.

Para el Write Model (Consistency First)

Aqui la prioridad es la integridad referencial y la consistencia fuerte.
PostgreSQL sigue siendo la eleccién preferida por su fiabilidad y el soporte
nativo a JSONB, que permite guardar payloads de eventos complejos

manteniendo garantias ACID.

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

Para el Read Model (Availability & Partition Tolerance)

Aqui la prioridad es la baja latencia. DynamoDB (o Cassandra para
instalaciones on-premise) sobresale. Podemos crear diferentes “Vistas”

(Materialized Views) basadas en los mismos datos:

e Vista Operador: Optimizada para la bUsqueda por Apellido/DNI.

e Vista Dashboard Directivo: Agregados precalculados sobre volumenes

concedidos por regién.

Desafios de Ingenieria: Sincronizacion y Consistencia
Eventual

La implementacion del patron CQRS introduce una complejidad no
despreciable: la Consistencia Eventual (Eventual Consistency). Dado que
hay un retraso (a menudo del orden de milisegundos, pero potencialmente
segundos) entre la escritura del evento y la actualizacién de la vista de lectura,

el usuario podria no ver inmediatamente los cambios.

Estrategias de Mitigacion

1. Gestion de la interfaz de usuario (Ul Optimistic Updates)

No esperar a que el servidor confirme la actualizacién de la vista de lectura. Si
el comando devuelve 200 OK, la interfaz frontend deberia actualizar el estado

local asumiendo el éxito de la operacién.

2. Message Brokers Fiables

Para sincronizar Command y Query, es necesario un bus de mensajes robusto.
Apache Kafka o RabbitMQ son estandares industriales. La arquitectura debe

garantizar el orden de los eventos (para evitar que un evento de “Aprobacién”

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

sea procesado antes de la “Creacidon”) y la idempotencia (procesar el mismo

evento dos veces no debe corromper los datos).

3. Versioning de Eventos

En el ciclo de vida de un software CRM, la estructura de los datos cambia. ;Qué
sucede si afadimos un campo “Certificado Energético” al evento
PropertyDetail sUpdated? Es necesario implementar estrategias de

Upcasting, donde el sistema es capaz de leer versiones antiguas de los
eventos y convertirlas al vuelo al nuevo formato antes de aplicarlas a las

proyecciones.

Implementacion Practica: Ejemplo de Command
Handler

Aqui hay un pseudocédigo l6gico de como un Command Handler gestiona una

solicitud de cambio de tipo en una arquitectura CQRS:

cl ass ChangeRat eHandl er {

public voi d Handl e(ChangeRat eCommand conman
/1 1. Carga el stream de eventos para este |ID de Hi poteca
var event Stream=_event St or e. LoadSt r eam(comrand. Mor t gagel d) ;

Il 2. Reconst ruye el est ado act u;
var nort gage = new MortgageAggregat e(eve
Il 3. Ejecuta la ldégica de domnio (Valid;

/'l Lanza excepci 6n si el estado no pernmite el canbio de tipo

nor t gage. ChangeRat e(command. NewRat e) ;

Il 4. Guar da | os nuevos even

/1'5. Publicael eventoenel Bus paraactualizar | os Read Model s

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

_messageBus. Publ i sh(nort gage. Get Uncommi t t edChanges()) ;

Conclusiones

Adoptar el patron CQRS en un CRM para hipotecas no es una decisién que
deba tomarse a la ligera, dado el aumento de la complejidad infraestructural.
Sin embargo, para instituciones financieras que aspiran a escalar mas alld de
las limitaciones de las bases de datos relacionales monoliticas y que necesitan
audit trails inatacables mediante Event Sourcing, representa el estado del arte

de la ingenieria de software.

La separacidn neta entre quien escribe los datos y quien los lee permite
optimizar cada lado de la aplicacién con las tecnologias mas adecuadas
(PostgreSQL para la seguridad, NoSQL para la velocidad), garantizando un

sistema listo para el futuro de la banca digital.

Preguntas frecuentes

¢Qué distingue al patron CQRS de las arquitecturas tradicionales?

El CQRS separa claramente el modelo de escritura del de lectura, a diferencia
de los sistemas monoliticos que usan una Unica base de datos para todo. Esto
permite gestionar elevados volUmenes de consultas de tipos y expedientes sin
bloquear las operaciones criticas de insercion de datos, mejorando

drasticamente el rendimiento del CRM bancario.

¢Por qué la técnica Event Sourcing es fundamental para la gestion de

hipotecas?

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

En lugar de guardar solo el estado final de un expediente, la metodologia Event
Sourcing registra cada evento individual ocurrido en secuencia temporal. Esto
garantiza un seguimiento completo e inmutable de todas las operaciones,
requisito a menudo indispensable para el cumplimiento normativo y para

reconstruir la historia exacta de cada hipoteca.

¢Qué tecnologias de base de datos se recomiendan para una
arquitectura CQRS?

Se recomienda un enfoque hibrido que aproveche lo mejor de cada tecnologia.
Para el lado de escritura es ideal una base de datos relacional robusta como
PostgreSQL que asegura la integridad de los datos, mientras que para el lado
de lectura son preferibles soluciones NoSQL como MongoDB o DynamoDB para

garantizar respuestas inmediatas a las consultas de las API.

¢Como se gestiona el retraso de actualizacion de datos en CQRS?

El retraso, conocido como Consistencia Eventual, se mitiga actualizando de
modo optimista la interfaz de usuario y utilizando message brokers robustos
como Apache Kafka. Estas herramientas sincronizan los modelos de lectura y
escritura garantizando que los datos se alineen correctamente y en orden

cronolégico sin pérdidas de informacion.

¢Qué ventajas ofrece CQRS para la escalabilidad de los sistemas
Fintech?

Esta arquitectura permite escalar de manera independiente los recursos
dedicados a la lectura y a la escritura en base a la carga real. Ademas, facilita
la creacidon de vistas personalizadas para diferentes usuarios, como operadores
de back office y clientes finales, sin que las consultas complejas ralenticen el

sistema transaccional principal.

Coepyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati

