De la Monolit la Microservicii:

Ghid de Migrare in Sectorul
Creditelor

Autore: Francesco Zinghini | Data: 26 Gennaio 2026

Tranzitia de la monolit la microservicii reprezinta astazi cea mai critica
provocare arhitecturala pentru companiile din sectorul fintech si al
intermedierii de credite. In 2026, modernizarea platformelor legacy nu mai este
doar o chestiune de eficienta tehnica, ci un imperativ de supravietuire pentru a
concura pe o piata dominata de Open Finance si reglementari in rapida
evolutie. Acest ghid strategic si tehnic exploreaza modul de descompunere a
unei aplicatii monolitice, gestionand complexitatea datelor tranzactionale,

rezilienta integrarilor bancare si automatizarea infrastructurii.

1. Contextul: De ce Sectorul Creditelor trebuie sa
Evolueze

Platformele de gestionare a creditelor se nasc adesea ca arhitecturi monolitice:
un singur bloc de cod in care interfata utilizator, logica de business (scoring,
analiza dosar, acordare) si accesul la date sunt strans cuplate. Desi aceasta
abordare garanteaza initial simplitatea dezvoltarii si tranzactii ACID
(Atomicitate, Consistenta, Izolare, Durabilitate) native datorita unei singure

baze de date relationale, pe termen lung devine un blocaj.

Principalele probleme cu care ne confruntam in domeniul creditarii sunt:

Copyright © 2026 TuttoSemplice.com - Tutti i diritti riservati



e Scalabilitate limitata: Imposibil de scalat doar modulul de “Calcul Rata”

fara a replica intreaga aplicatie.

e Cicluri de lansare lente: O modificare normativa privind calculul DAE

necesita redeploy-ul intregului sistem, crescand riscul de regresii.

e Punct Unic de Esec (Single Point of Failure): O eroare in modulul de

generare PDF poate bloca intregul portal de solicitare a iTmprumuturilor.

2. Strategia de Descompunere: Domain-Driven
Design (DDD)

Migrarea de la monolit la microservicii nu trebuie sa fie niciodata un “Big
Bang” (rescriere totala simultana), ci un proces iterativ bazat pe modelul
Strangler Fig (Smochinul Strangulator), asa cum a fost teoretizat de Martin

Fowler. Primul pas nu este scrierea codului, ci definirea limitelor.

Identificarea Contextelor Delimitate (Bounded Contexts)

Utilizand principiile Domain-Driven Design (DDD), trebuie sa mapam
subdomeniile functionale. in creditare, limitele naturale (Bounded Contexts) ar

putea fi:

Onboarding & KYC: Gestionare anagrafica si combaterea spalarii banilor.

Credit Scoring: Motor decizional si interogare Biroul de Credit/Experian.

Loan Origination System (LOS): Fluxul de lucru al dosarului.

Ledger & Accounting: Gestionarea miscarilor contabile.

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



Fiecare microserviciu trebuie sa posede propria baza de date (modelul
Database-per-Service) pentru a garanta decuplarea. Acest lucru introduce cea

mai mare provocare tehnica: consistenta datelor.

3. Provocarea Datelor: ACID vs BASE in Mediu
Distribuit

intr-un monolit bancar, transferul de fonduri si actualizarea starii dosarului au
loc intr-o singura tranzactie de baza de date. intr-o arhitecturd de microservicii,
aceste operatiuni au loc pe servicii diferite. Nu putem folosi tranzactii
distribuite clasice (Two-Phase Commit) din cauza latentei si a blocarii

resurselor.

Implementarea Modelului Saga

Pentru a mentine consistenta, adoptam Modelul Saga. O Saga este o
secventa de tranzactii locale. Daca o tranzactie esueaza, Saga executa o serie

de tranzactii de compensare pentru a anula modificarile anterioare.
Exista doua abordari principale:

1. Coregrafie: Serviciile fac schimb de evenimente (de ex. prin Kafka sau
RabbitMQ). Serviciul Scoring emite evenimentul Scori ngConpl et ed, care

este ascultat de serviciul Origination.

2. Orchestrare: Un serviciu central (Orchestrator) comanda celorlalte ce sa
facd. In contextul creditarii, unde fluxurile de lucru sunt complexe si
reglementate, orchestrarea este adesea preferabila pentru a avea

vizibilitate asupra starii dosarului.

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



4. Containerizare si Orchestrare: Docker

‘2,

Kubernetes

Odata definite serviciile, tehnologia care permite acest Ilucru este
containerizarea. Docker permite impachetarea fiecarui microserviciu cu
dependentele sale (biblioteci, runtime), garantand ca mediul de dezvoltare este

identic cu cel de productie.

Pentru a gestiona zeci sau sute de containere, Kubernetes (K8s) este

standardul de facto. K8s ofera:

o Self-healing (Auto-vindecare): Reporneste automat containerele care
esueaza (de ex. un serviciu de ofertare care se blocheaza din cauza

memoriei insuficiente).

e Autoscaling: Creste replicile pod-urilor in timpul picurilor de solicitari (de

ex. campanii de marketing Black Friday).

e Service Discovery: Gestioneaza rutarea traficului intern intre

microservicii fara hard-coding-ul IP-urilor.

5. Rezilienta si Integrare cu API-uri Bancare Externe

Un intermediar de credite trebuie sa dialogheze cu multiple API-uri externe
(Banci, Gateway PSD2, Centrale de Risc). Aceste API-uri sunt supuse latentei,
timeout-urilor sau indisponibilitatii temporare. O arhitectura de microservicii

trebuie sa fie proiectata pentru esec.

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



Modelul Circuit Breaker

Este esential sa implementam modelul Circuit Breaker (utilizand biblioteci
precum Resilienced4j sau functionalitatile Service Mesh precum Istio).

Functioneaza ca un intrerupator electric:

e Closed (inchis): Traficul curge normal.

e Open (Deschis): Daca numarul de erori depaseste un prag (de ex. 5
timeout-uri consecutive catre API-ul Bancii X), circuitul se deschide si
apelurile esueaza imediat fara a astepta timeout-ul, prezervand resursele

sistemului.

e Half-Open (Semi-Deschis): Dupa o perioada de timp, sistemul lasa sa
treaca cateva cereri de proba pentru a verifica daca serviciul extern a

revenit online.

Retry cu Backoff Exponential

Pentru erori tranzitorii, implementam politici de Retry inteligente. Nu
reincercati imediat, ci asteptati timpi crescatori (de ex. 1s, 2s, 4s) pentru a nu

supraincarca un sistem deja in suferinta (Exponential Backoff).

6. DevOps si Infrastructure as Code (l1aC)

Complexitatea operationala a microserviciilor necesita o abordare DevOps

matura. Nu este posibila gestionarea manuala a infrastructurii.

Terraform si GitOps

Utilizam Terraform pentru a defini infrastructura ca cod (laC). Acest lucru
permite versionarea arhitecturii cloud (AWS/Azure/GCP) pe Git, garantand

auditabilitatea si reproductibilitatea, cerinte fundamentale pentru inspectiile

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



Bancii Nationale sau BCE.

Conducte CI/CD

Conductele de Integrare Continua si Implementare Continua (CI/CD) trebuie sa

includa:

o Teste Automatizate: Unit test, Integration test si Contract test (pentru a

verifica daca APIl-urile nu au rupt compatibilitatea).

e Security Scanning: Analiza statica a codului (SAST) si scanarea

imaginilor Docker pentru vulnerabilitati cunoscute (CVE).

e Canary Deployment: Lansarea noii versiuni a microserviciului doar catre
un procent mic de utilizatori pentru a verifica stabilitatea inainte de

rollout-ul complet.

Concluzii

Migrarea de la monolit la microservicii in sectorul creditelor nu este o
simpla actualizare tehnologica, ci o restructurare profunda a proceselor
operationale. Necesita o gestionare riguroasa a consistentei datelor prin
modele precum Saga, o rezilienta proactiva prin Circuit Breaker si o
automatizare totala prin DevOps. Doar asa inovatia tehnologica se poate
traduce in viteza de business, permitand lansarea de noi produse financiare in
zile in loc de luni, mentinand in acelasi timp robustetea si securitatea cerute de

reglementator.

Intrebari frecvente

De ce sa migrati de la monolit la microservicii in sectorul creditelor?

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



Migrarea catre microservicii este necesara pentru a depasi limitele de
scalabilitate si lentoarea lansarilor tipice arhitecturilor monolitice. in fintech,
acest pas este crucial pentru adaptarea rapida la reglementari, cum ar fi
modificarile privind calculul DAE, si pentru a concura pe piata Open Finance,
permitand actualizarea modulelor individuale fara a risca blocarea intregii

platforme.

Cum se gestioneaza consistenta datelor intr-o arhitectura distribuita?
intr-un mediu de microservicii, unde nu este posibila utilizarea tranzactiilor
ACID clasice pe o singura baza de date, se adopta Modelul Saga. Aceasta
metoda gestioneaza consistenta printr-o secventa de tranzactii locale
coordonate prin orchestrare sau coregrafie. Daca un pas esueaza, sistemul
executa automat tranzactii de compensare pentru a anula modificarile

anterioare si a mentine integritatea datelor financiare.

Care este cea mai buna strategie pentru descompunerea unei aplicatii
legacy?

Abordarea cea mai eficienta evita rescrierea totala simultana, cunoscuta sub
numele de Big Bang, favorizand in schimb un proces iterativ bazat pe modelul
Strangler Fig. Utilizand Domain-Driven Design, se identifica limitele functionale
sau Bounded Contexts, precum Credit Scoring sau Onboarding, pentru a
extrage si moderniza progresiv parti individuale ale sistemului, reducand

riscurile operationale.

Ce sunt modelele Circuit Breaker si Retry in integrarile bancare?

Sunt mecanisme fundamentale pentru garantarea rezilientei atunci cand se
comunica cu APIl-uri externe instabile. Circuit Breaker intrerupe apelurile catre
un serviciu care returneaza erori repetate, prevenind blocarea resurselor

interne. Politicile de Retry cu Backoff Exponential, in schimb, gestioneaza noile

Copyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



incercari de conectare asteptand intervale de timp crescatoare, evitand

supraincarcarea sistemelor externe deja aflate in dificultate.

Ce avantaje ofera Kubernetes pentru platformele fintech?

Kubernetes este esential pentru gestionarea complexitatii containerelor in
productie, oferind functionalitati critice precum auto-vindecarea (self-healing),
care reporneste automat serviciile blocate, si scalarea automata (autoscaling).
Aceasta din urma permite infrastructurii sa se adapteze dinamic la picurile de
sarcina, garantand continuitatea operationala in momente critice precum

campaniile de marketing sau termenele fiscale.

Coepyright © 2026 TutteSemplice.eom = Tutti i diritti Fiservati



